Lifelong learning aims to create AI systems that continuously and incrementally learn during a lifetime, similar to biological learning. Attempts so far have met problems, including catastrophic forgetting, interference among tasks, and the inability to exploit previous knowledge. While considerable research has focused on learning multiple input distributions, typically in classification, lifelong reinforcement learning (LRL) must also deal with variations in the state and transition distributions, and in the reward functions. Modulating masks, recently developed for classification, are particularly suitable to deal with such a large spectrum of task variations. In this paper, we adapted modulating masks to work with deep LRL, specifically PPO and IMPALA agents. The comparison with LRL baselines in both discrete and continuous RL tasks shows competitive performance. We further investigated the use of a linear combination of previously learned masks to exploit previous knowledge when learning new tasks: not only is learning faster, the algorithm solves tasks that we could not otherwise solve from scratch due to extremely sparse rewards. The results suggest that RL with modulating masks is a promising approach to lifelong learning, to the composition of knowledge to learn increasingly complex tasks, and to knowledge reuse for efficient and faster learning.
translated by 谷歌翻译
元钢筋学习(Meta-RL)算法使得能够快速适应动态环境中的少量样本的任务。通过代理策略网络中的动态表示(通过推理关于任务上下文,模型参数更新或两者)获得的动态表示来实现这样的壮举。然而,由于在策略网络上满足不同的政策,因此获得了超越简单基准问题的快速适应的丰富动态表示是具有挑战性的。本文通过将神经调节引入模块化组件来解决挑战,以增加调节神经元活动的标准策略网络,以便为任务适应提供有效的动态表示。策略网络的建议扩展是在越来越复杂的多个离散和连续控制环境中进行评估。为了证明在Meta-R1中的延伸的一般性和益处,将神经调序的网络应用于两个最先进的META-RL算法(胱瓦和珍珠)。结果表明,与基线相比,通过神经调节增强的Meta-R1产生明显更好的结果和更丰富的动态表示。
translated by 谷歌翻译